Magnetic field enhanced single particle tunneling in MoS2–superconductor vertical Josephson junction
Xu Wen-Zheng1, Qin Lai-Xiang1, Ye Xing-Guo1, Lin Fang1, Yu Da-Peng2, Liao Zhi-Min1, 3, †
State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China

 

† Corresponding author. E-mail: liaozm@pku.edu.cn

Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703703 and 2016YFA0300802) and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004).

Abstract

As a prototypical transition-metal dichalcogenide semiconductor, MoS2 possesses strong spin–orbit coupling, which provides an ideal platform for the realization of interesting physical phenomena. Here, we report the magnetotransport properties in NbN–MoS2–NbN sandwich junctions at low temperatures. Above the critical temperature around ∼11 K, the junction resistance shows weak temperature dependence, indicating a tunneling behavior. While below ∼11 K, nearly zero junction resistance is observed, indicating the superconducting state in the MoS2 layer induced by the superconducting proximity effect. When a perpendicular magnetic field ∼1 T is applied, such proximity effect is suppressed, accompanying with insulator-like temperature-dependence of the junction resistance. Intriguingly, when further increasing the magnetic field, the junction conductance is significantly enhanced, which is related to the enhanced single particle tunneling induced by the decrease of the superconducting energy gap with increasing magnetic fields. In addition, the possible Majorana zero mode on the surface of MoS2 can further lead to the enhancement of the junction conductance.

Reference
[1] Zeng S M Zhao Y C Li G Ni J 2016 Phys. Rev. 94 024501
[2] Klinovaja J Loss D 2013 Phys. Rev. 88 075404
[3] Roldán R Cappelluti E Guinea F 2013 Phys. Rev. 88 054515
[4] Zhang R Y Tsai I L Chapman J Khestanova E Waters J Grigorieva I V 2016 Nano Lett. 16 629
[5] Costanzo D Jo S Berger H Morpurgo A F 2016 Nat. Nanotechnol. 11 339
[6] Taniguchi K Matsumoto A Shimotani H Takagi H 2012 Appl. Phys. Lett. 101 042603
[7] Saito Y Nakamura Y Bahramy M S Kohama Y Ye J T Kasahara Y Nakagawa Y Onga M Tokunaga M Nojima T Yanase Y Iwasa Y 2016 Nat. Phys. 12 144
[8] Ye J T Zhang Y J Akashi R Bahramy M S Arita R Iwasa Y 2012 Science 338 1193
[9] Yuan N F Q Mak K F Law K T 2014 Phys. Rev. Lett. 113 097001
[10] Lu J M Zheliuk O Leermakers I Yuan N F Q Zeitler U Law K T Ye J T 2015 Science 350 1353
[11] Zhou B T Yuan N F Q Jiang H L Law K T 2016 Phys. Rev. 93 1850501(R)
[12] Ganatra R Zhang Q 2014 ACS Nano 8 4074
[13] Zhang H Liu C X Gazibegovic S Xu D Logan J A Wang G Loo N Bommer J D S Moor M W A Car D Op het Veld R L M Veldhoven P J Koelling S Verheijen M A Pendharkar M Pennachio D J Shojaei B Lee J S Palmstrøm C J Bakkers E P A M Sarma S D Kouwenhoven L P 2018 Nature 556 74
[14] Jose P S Prada E Aguado R 2014 Phys. Rev. Lett. 112 137001
[15] Gül Ö Zhang H Bommer J D S Moor M W A Car D Plissard S R Bakkers E P A M Geresdi A Watanabe K Taniguchi T Kouwenhoven L P 2018 Nat. Nanotechnol 13 192
[16] Lin C H Sau J D Sarma S D 2012 Phys. Rev. 86 224511
[17] Alicea J 2010 Phys. Rev. 81 125318
[18] Kitaev A Y 2003 Ann. Phys. 303 2
[19] Halperin B I Oreg Y Stern A Refael G Alicea J von Oppen F 2012 Phys. Rev. 85 144501
[20] Elliott S R Franz M 2015 Rev. Mod. Phys. 87 137
[21] Mathur M P Deis D W Gavaler J R 1972 J. Appl. Phys. 43 3158
[22] Beck M Klammer M Lang S Leiderer P Kabanov V V Gol’tsman G N Demsar J 2011 Phys. Rev. Lett. 107 177007
[23] Noat Y Cherkez V Brun C Cren T Carbillet C Debontridder F Ilin K Siegel M Semenov A Hübers H W Roditchev D 2013 Phys. Rev. 88 014503
[24] Georgiou T Jalil R Belle B D Britnell L Gorbachev R V Morozov S V Kim Y J Gholinia A Haigh S J Makarovsky O Eaves L Ponomarenko L A Geim A K Novoselov K S Mishchenko A 2013 Nat. Nanotechnol. 8 100
[25] Takayanagi H Kawakami T 1985 Phys. Rev. Lett. 54 2449
[26] McMillan W L 1968 Phys. Rev. 175 537
[27] Zhang L Yan Y Wu H C Yu D P Liao Z M 2016 ACS Nano. 10 3816
[28] Britnell L Gorbachev R V Jalil R Belle B D Schedin F Mishchenko A Georgiou T Katsnelson M I Eaves L Morozov S V Peres N M R Leist J Geim A K Novoselov K S Ponomarenko L A 2012 Science 335 947
[29] Kleinsasser A W Miller R E Mallison W H Arnold G B 1994 Phys. Rev. Lett. 72 1738
[30] Blonder G E Tinkham M lapwijk T M K 1982 Phys. Rev. 25 4515
[31] Tkachov G Fal’ko V I 2004 Phys. Rev. 69 092503
[32] Kleinsasser A W Kastalsky A 1993 Phys. Rev. B. 47 8361
[33] Koppinen P J Kühn T Maasilta I J 2009 J. Low Temp. Phys. 154 179
[34] Dynes R C Narayanamurti V Garno J P 1978 Phys. Rev. Lett. 41 1509
[35] Molina S ánchez A Sangalli D Hummer K Marini A Wirtz L 2013 Phys. Rev. 88 045412